Every tree is 3-equitable

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Complete Binary Tree is Prime

A graph with a vertex set V is said to have a prime labeling if its vertices can be labeled with distinct integers 1; 2; ; jV j such that for every edge fx; yg, the labels assigned to x and y are relatively prime. A tree is prime if it has at least one prime labeling. Around 1980, Entringer conjectured that every tree is prime. After three decades, this conjecture remains open. Nevertheless, a ...

متن کامل

4−equitable Tree Labelings

A tree is a vertex-edge graph that is connected and contains no cycles. A 4−equitable labeling of a graph is an assignment of labels {0, 1, 2, 3} to the vertices. The edge labels are the absolute difference of the labels of the vertices that they are incident to. The labels must be distributed as evenly as possible amongst the vertices and they must also be distributed as evenly as possible amo...

متن کامل

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

Every Monotone 3-Graph Property is Testable

Let k ≥ 2 be a fixed integer and P be a property of k-uniform hypergraphs. In other words, P is a (typically infinite) family of k-uniform hypergraphs and we say a given hypergraph H satisfies P if H ∈ P . For a given constant η > 0 a k-uniform hypergraph H on n vertices is η-far from P if no hypergraph obtained from H by changing (adding or deleting) at most ηn edges in H satisfies P . More pr...

متن کامل

Behind Every Great Tree is a Great (Phylogenetic) Network

In Francis and Steel (2015), it was shown that there exists non-trivial networks on 4 leaves upon which the distance metric affords a metric on a tree which is not the base tree of the network. In this paper we extend this result in two directions. We show that for any tree T there exists a family of non-trivial HGT networks N for which the distance metric dN affords a metric on T . We addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2000

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00033-9